Low-energy Photochemical Reactions of the Tetrakis(methyl isocyanide)iridium(I) Cation and some Oxidative Additions of a Stable Complex of Five-co-ordinate $Iridium(I)$

By WENDY M. BEDFORD and GEORGE ROUSCHIAS*

(Department of Chemistry, The University, Southampton SO9 5NH)

Summary The deep blue cation $[Ir(MeNC)_4]^+$ associates with monodentate ligands L when irradiated with visible light and some of the products $[IrL(MeNC)_4]$ ⁺ dissociate thermally in the dark back to $[Ir(MeNC)_4]+$ and L; the very stable five-co-ordinate cation $[Ir(MeNC)(dppe)_2]^{+}$ is formed by photosubstitution and it undergoes oxidative additions without loss of any of its existing ligands.

METHYL isocyanide acts as a powerful monodentate ligand towards transition metals in low and intermediate oxidation states.^{1,2} Thus, blue-black $[Ir(MeNC)_4]X$ (I; X = Cl; v_{CN} 2202 vs cm⁻¹, τ 6.00 s, Me, in D₂O) was isolated (80%) from the reaction of trans-IrCl(CO)(PPh₃)₂ and excess MeNC. Other salts (I; $X = PF_6$, BPh₄, I) were obtained by metathesis. They were oxidised by air almost at once even as solids, and in solution absorbed one mol of $O₂$ in the dark to form orange adducts. Complex salts $[Ir(RNC)_4]X$ were reported previously for $R = p$ -toly¹¹ and Bu^t,³ but their properties were not described.

In the absence of oxygen the salts (I) gave intensely blue solutions in various solvents (S) $(\lambda_{\text{max}} 610 \pm 20 \text{ nm})$;

 ϵ 22,000). These solutions were stable for several days in the dark and in the cold but turned red or orange in light within seconds to minutes depending on concentration $(\lambda_{\text{max}} 366 \pm 6 \text{ and } 418 \pm 2 \text{ nm})$. This was observed for (I) when $(X = \text{Cl}; S = \text{MeOH})$, $(X = \text{BPh}_4; S = \text{Me}_2\text{CO}$, MeCN, Me₂SO, and HCONMe₂), and $(X = BT_{4}^{T}, S = Mg_{2}^{T})$,
MeCN, Me₂SO, and HCONMe₂), and $(X = PF_{6}; S = MeCN)$, $Me₂SO$, and $HCONMe₂$). In some cases the change was reversible. When the irradiated red solution of $(I, X = Cl)$ in MeOH was stored in the dark it went blue in 6 days at 25° and in **20** min at **90°C.** Only *aqueous* solutions were stable to light, but a slow thermal reaction gave $[MeNH₃]$ Cl and an insoluble carbonyl. The photochemical change was accompanied by slight but definite changes in the n.m.r. at **60** and **100** MHz. The singlet duc to the equivalent methyl groups in (I) broadened $(X = BPh_4, S = Me_2CO)$ or split into a number of closely spaced resonances (for $X = BPh_4$, $S = \text{MeCN}: \tau 6.29, 6.32, \text{ and } 6.36; \text{ for } X = \text{Cl and } S =$ MeOH: *T* 5.90, 5.91, **5.93,** 5-98, and **6.03).** There were no other peaks in the range τ 0-50 and in particular the characteristic triplet of free methyl isocyanide at τ 6.92 (in CD,CN) was absent, ruling out both photodissociation and 6 and 418 ± 2 nm).

photosubstitution. The slightly different methyl environments $(A_1 - A_4, A = \text{MeNC})$ responsible for the resonances at $\tau \sim 6$ are consistent with a mixture of the trigonal bipyraat $\tau \sim 6$ are consistent with a mixture of the trigonal bipyramidal solvates (IIa and IIb, L = S). We therefore suggest that the system presents a photochromic equilibrium between the four-co-ordinate blue cation of (I) and the fiveco-ordinate orange-red solvates (II, $L = S$):

$$
[Ir(MeNC)4]+ + L \frac{hv}{heat} [IrL(MeNC)4]+
$$
 (1)

Aqueous solutions of $(I, X = Cl)$ did not react with $L = \text{MeNC}$ or CO in the dark, but the mixture turned $L =$ however of ∞ in the dark, but the initiate theorem MeNC the n.m.r. spectrum showed singlets at τ 6.00 and **6.10** (intensity ratio **2: 3)** corresponding to axial and equatorial isocyanides in $[Ir(MeNC)_5]^+$ (II, $L = A = MeNC$) This species decomposed on prolonged irradiation, but could be precipitated as $[Ir(MeNC)_5]BPh_4$. When $L = CO$ the orange solution had singlets at τ 5.97 and 6.07 (intensity ratio 1:3) corresponding to A_1 and A_2 in (IIa) and at τ 6.20 and 6.25 (intensity ratio 1:1) corresponding to A_3 and A_4 in (IIb). The isomers were present in equal amounts. Orange $[Ir(CO)(MeNC)₄]BPh₄$ was precipitated by NaBPh₄ **(vCN** at **2253sh, 2215vs, 2183vs; vco** at **2010s),** but addition of NaC10, resulted in evolution of CO even under **2** atm of carbon monoxide. A mixture of $[Ir(CO)(MeNC)₄]ClO₄$ and $(I;X = ClO₄)$ separated, and the remaining carbon monoxide was lost in refluxing butanone under argon to give blue-black $(I; X = ClO₄)$.

The forward reactions in equation (I) $(L = S, CO, MeNC)$ are, to our knowledge, $4,5$ the first examples of the photochemical formation of a metal-ligand bond (photo-association). The possibility had been recognised previously.4 A possible mechanism could proceed through an essentially metal to ligand charge transfer making the metal centre in the excited complex more susceptible to nucleophilic attack by L. In some systems $(e.g. L = \text{MeOH})$ the ground state **of** the product might bc unstable but fairly inert, resulting in slow thermal dissociation.

There was no reaction between (I) and $Ph₂ PCH₂ CH₂ PPh₂$ (dppe) in the dark, but immediate photosubstitution occurred in light to give yellow $[Ir(MeNC)(dppe)_2]^+$ (III). This was isolated as the perchlorate $(v_{\text{CN}} 2124s \text{ cm}^{-1})$ and was also obtained from $[Ir(CO)(dppe)_2]^+$ and MeNC. Surprisingly, the CH₃ signal at τ 7.19 was a quintet, 5 J(P-H) 1.6 Hz, due to long range coupling to four ^{31}P nuclei. Most five-co-ordinate *d8* complexes lose a ligand in oxidative additions^{3,6} but in (III) all five donor atoms are held tenaciously and are retained. Addition of Cl_2 , I_2 , HCl, and HgC1, gave doubly charged cations [IrY(MeNC]- $(dppe)_2$ ²⁺ (IV; Y = Cl, I, H, and HgCl respectively), which formed hygroscopic crystalline salts with $ClO₄^-$, $BF₄^-$ or BPh_4^- : The hydride resonance of (IV, $Y = H$) at *T* 20.7 was a doublet of a doublet of triplets, consistent with configuration (V) $[J(P¹-H) 15.6 Hz, J(P²-H) 10.2 Hz, and$ $J(P^3-H)$ 117 Hz]. The very broad methylene multiplet in (IV) compared to (111) suggests configuration (V) for the other adducts also. The $C \equiv N$ stretch in (IV) was 110-125 cm⁻¹ higher than in (III). Addition of H_2 , O_2 , SO_2 , and C_3H_5I also occurred under mild conditions and is under study. Me1 and MeCOCl did not react.

Whereas $PtCl₂(MeNC)(PR₃)$ reacts readily with alcohols to yield carbene complexes,⁷ (III) was recovered unchanged after heating in methanol to **100"** for **48** h, and after several weeks it was oxidised to IrIII. Reaction of $[Ir(MeNC)₃$ - $(PPh₃)₂$ ⁺ with methanol is reported to yield [Ir(OMe)- $(MeNC)_3(PPh_3)_2]^{2+}$ rather than a carbene.¹³ Similarly, $[Pt(MeNC)₄]$ ²⁺ (v_{CN} 2290 cm⁻¹) reacts immediately and exothermically with hydrazine to give Chugaev's cation2 whereas the isoelectronic $[\text{Ir}(\text{MeNC})_4]^+$ (v_{CN} 2202 cm⁻¹) did not react at all. Since the $C=N$ stretching frequency in the reactive isocyanides of PtII 2,7 is ca . 100 cm⁻¹ higher than in the inert isocyanides of Ir^I it appears that the reaction with alcohols and amines to form carbenes is a property of isocyanide co-ordinated as a σ -donor but not as a π -acceptor.

We thank Johnson, Matthey $& Co.$ Ltd. for their generous loan of iridium salts and the S.R.C. for a studentship to (W.M.B.).

(Received, **30th** *August* **1972;** *Corn.* **1596.)**

 \dagger Elemental analyses for all the compounds described [except (I)] were within $\pm 0.3\%$ of calculated. Compounds (I) were charactcrised by physical measurements only.

L. Malatesta and F. Bonati, 'Isocyanide Complexes of Metals,' Wiley, London, **1969.**

G. Rouschias and B. L. Shaw, *J. Chem. Soc.* (*A*), **1971, 2097.** *Comm.***, 1971, 1197. J.** W. Dart, M. K. Lloyd, J. A. McCleverty, and R. Mason, *Chem. Comm.*, **1971, 1197.**

⁴ V. Balzani and V. Carassiti, 'Photochemistry of Co-ordination Compounds,' Academic Press, London, 1970, p. 379—38
⁵ A. W. Adamson, W. L. Waltz, E. Zinato, D. W. Watts, P. D. Fleischauer, and R. D. Lindholm, *Chem. Re*

J. P. Collman and W. R. Roper, *Adv. Organometallic Chem.,* **1968, 7, 54;** D. Evans, G. Yagupsky, and G. Wilkinson, *J. Chem.* SOC. (4), **1970, 1392.**

⁷ E. M. Badley, J. Chatt, and R. L. Richards, *J. Chem. Soc. (A)*, **1971**, **21**.